Introduction to Asphalt Technology

John Zaniewski LTAP Consultant PO Box 6103 WVU Morgantown, WV 26506

1

Objectives • Understand the materials used for construction of flexible pavements • Bituminous materials • Aggregates • Mix Design process - Marshall - Superpave • Construction and inspection of asphalt concrete pavements

1-3

1-1

3

Fundamentals of Bituminous Materials and Mixes

• Asphalt

- hydrogen and carbon + minor elements
 Bitumen
- Mineral Aggregate
- coarse
- fine
- mineral filler
- Air
- mixture of aggregate and asphalt
 high quality road

· Hot mix asphalt -

- construction
 Cold mix
- mixture of aggregate and emulsion
 patching

Spray applications

1-4

Uses of Asphalt

- Hot mix pavement
 central mix in batch, continuous or drum plant
 - transported hot
 - placed with paver
 - compacted
- Cold mix
 - cold IIIX
 central plant
 - use emulsion or cutback
 - used for patching
- Surface treatment
 application of asphalt
 single sized aggregate
 rolled to orient aggregate
- Tack coat
 - spray application of emulsionbond surface with new
 - bond surface with n paving mix

1-5

5

Fundamentals of Asphalt

- Types of bituminous materials
- Types of aggregates
- Mix design
- Construction
- Performance

1-6

1-7

6

Asphalt Properties

- Consistency or hardness
 - ability to flow
 - viscosity
- Effect of Heat
 - flows at high temperatures
 - stiff at low temperatures
 - $-\,$ ages when exposed to high temperature and air

1-9

- Adhesion
- Durability
- Handling

Properties of Aggregates

- Resistance to weathering
- Abrasion resistance
- Deleterious materials
- Unit weight density
- Fractured faces
- Surface texture

14

Asphalt Mix Design

- Determine the combination of aggregates and asphalt that provides mixes with required characteristics
- · Mix design methods
 - Marshall
 - Superpave
- Technicians are required to obtain certification by completing an approved mix design class.

15

Desired Characteristics

- Stability ability to resist loads without excessive deformation
- Workability ability to place and compact the mix
- Durability ability to resist changes caused by traffic and environment

1-16

1-14

Construction

1-17

- Surface preparation
- Mix production
- Transportation
- Placement
- Compaction

17

18

Asphalt Concrete Placement

- Continuous operation
 - Delivery
 - Loading paverConstant head of
 - material
 - No thickness
 - adjustment

1-22

21

Module 2

Limitations of Previous Methods

- Empirical
- · Standard temperature
- No low temperature evaluation
- · Short term aging only
- Grading method not sensitive enough

2-4

• Cannot consider modified asphalt

4

5

Module 2

Aging

- Asphalt reacts with oxygen – "oxidative" or "age hardening"
- Short term
 - Volatilization of specific components
 - During construction process
- Long term
 - Over life of pavement (in-service)

7

SHRP Temperatures

2-7

2-8

- High highest seven-day moving average pavement temperature, as computed from air temperature and other environmental factors
- Low lowest pavement temperature at the site, computed from air temperature and location
- Intermediate average of high and low plus $4^\circ \! \mathrm{C}$

8

Equipment	Purpose	Performance	
• •	•	Parameter	
Rolling thin film oven	Binder aging during production	Resistance to aging during construction	
Pressure aging vessel	Aging during service life	Resistance to aging during service life	
Rotational Viscometer	Binder properties at mix temperature	Handling and pumping	
Dynamic Shear Rheometer	Rheology at high and intermediate temp.	Rutting and fatigue	
Bending Beam Rheometer	Rheology at low temperatures	Thermal cracking	
Direct Tension Tester	Low temperature properties	Thermal cracking	

Test Conditions						
	1	[emperatur	е			
Stage	Low	Inter- mediate	High	Quality		
Original			DSR	Rotational Flash point Solubility		
As constructed RTFO			DSR			
Long term aging I RTFO + PAV	BBR DTT	DSR				

- Fundamental properties related to pavement performance
- Environmental factors
- In-service & construction temperatures

2-19

• Short and long term aging

19

20

TABLE 408.11					
Condition of	Application Rate (gal/yd ²) / (L/m ²) (Note-2)				
Pavement	Undiluted	Diluted (1:1) (Note-3)			
New HMA (Note-4)	0.04 - 0.05 / (0.18 - 0.23)	0.08 to 0.10 / (0.36 - 0.45)			
Oxidized HMA	0.07 - 0.10 / (0.32 - 0.45)	0.13 - 0.20 / (0.59 - 0.90)			
Milled Surface	0.10 - 0.13 / (0.45 - 0.49)	0.20 – 0.27 / (0.90 – 1.22)			
PC Concrete	0.07 - 0.10 / (0.32 - 0.45)	0.13 - 0.20 / (0.59 - 0.90)			

Asphalt Cutbacks

- Cutback asphalt a combination of asphalt cement and petroleum solvent.
- · Reduce asphalt viscosity for lower temperature uses - Prime coat, Tack coat, Fog seal, Slurry seal
 - After applied the petroleum solvent evaporates leaving behind asphalt cement residue
 - Cutback asphalt is said to "cure" as the petroleum solvent evaporates away.
- · Use of cutback asphalts is decreasing

 - Environmental regulations.
 Loss of high energy products.
- Use in WV for winter patch mix

2-29

29

Natural sand and gravel

- Underwater sources + Rivers & lakes

- + Barge-mounted dredges, draglines, scoop, conveyors, or pumps
 + Relatively clean
- Land sources
- + Gravel or sand pits + Bucket loader

3-4

4

5

Sampling

- Why Sampling Is Important
 - To evaluate the potential quality of a proposed aggregate source.
 - Does new source meet aggregate specifications?
 - To determine compliance with project specification requirements.
 - Do current aggregates meet specifications?

10

Required Aggregate Properties

3-10

3-11

- Coarse Aggregate 703.1 703.3
- Fine Aggregate 702.3
- Mineral Filler 702.4

11

Current WVDOH

• Maximum of 3% deleterious materials

19

Percentage of Wear Toughness

* Los Angeles Abrasion (AASHTO T96, ASTM C131 C535):

Resistance of coarse aggregate to abrasion and mechanical degradation during handling, construction and use

3-19

3-20

* Aggregate at standard gradation subjected to damage by rolling with prescribed number of steel balls in large drum for a given number of rotations * Result expressed as % changes in original weight

* WVDOH - maximum weight loss of 40% test material retained on 4.75 mm sieve

23

WVDOH Fine Aggregate Requirements

• 702.3

- Meet requirements of ASTM D 1073

- Wave gradation requirements

3-24

Gradation Analysis

Washed sieve

- Dry aggregate and determine mass
 - Wash and decant water through 0.075 mm sieve until water is clear

3-26

- Dry aggregate to a constant mass
- Determine mass of 0.075 material removed by washing

26

Gradation Analysis

Mechanical sieve analysis

- Place dry aggregate in standard stack of sieves
- Place sieve stack in mechanical shaker
- Determine mass of aggregate retained on each sieve

Su	nern	ave (Frada	ution	Real	iiren	nents.»		
Ju	Percent Passing Criteria (Control Points)								
	Nominal Maximum Sieve Size								
	4.75	9.5 mm	12.5 mm	19 mm	25 mm	37.5 mm	<u> </u>		
Standard	Wearing	Wearing I		Base II		Base I	Mix		
Sieve		(Scratch)		Wearing-			Designations		
(mm)				IV					
50						100 •	Maximum		
37.5					100	90-100	aggregate		
25				100	90-100	90.0 max.	size		
19			100	90-100	90.0 max.		Nominal		
12.5	100	100	90-100	90.0 max.			Maximum		
9.5	95-100	90-100	90.0 max.			47 🔨	aggregate size		
4.75	90-100	90.0 max.		47	40				
0.00		32-67	28-58	00.40	19-45	40.45	40.45	45.44	Primary Control
2.30		47	39	23-49		15-41	Sieve		
1.18	30-60						1		
0.075	6-12	2.0-10.0	2.0-10.0	2.0-8.0	1.0-7.0	0.0-6.0			
Gra	dations	which fal	l below	the prima	ary contr	ol sieve a	are		
clas	sified as	coarse g	radation	s			3-31		

		5	stock	oiles		
Material	Agg. #1		Agg. #2			
% Used					Blend	Target
U.S. Sieve	% Passing	% Batch	% Passing	% Batch		
3/8 "	100		100			100
No. 4	90		100			80 - 100
No. 8	40		100			65 - 100
No. 16	15		78			40 - 80
No. 30	3		52			20 - 65
No. 50	1		29			7 - 40
No. 100	0		16			3 - 20
No. 200	0		12			2 - 10

35

Blended Aggregate Specific Gravities

- Once the percentages of the stockpiles have been established, the combined aggregate specific gravity is calculated
- Specific gravity is a measure of the mass/volume characteristics of a material

3-36

Mix Design

John Zaniewski LTAP Consultant PO Box 6103 WVU Morgantown, WV 26506

4-1

1

2

Select aggregates

Marshall

- Deleterious materials
- Wear resistance
- Soundness
- Fractured faces
- · Flat and elongated
- Blend for gradation
- · Determine specific gravity
- Superpave
- Source properties

 Deleterious materials
 - Wear resistance
 - Soundness
- Consensus properties
 - Coarse aggregate angularity
 Flat and elongated
 - Fine aggregate angularity
- Sand equivalencyGradation
- Specific gravity

4

Other grades by special provision

 PG 64E-22 high traffic volume slow moving
 PG 58S-28 high elevation areas

4-5

4-4

5

Prepare samples

Marshall

- Compacted samples
- Bulk specific gravity
- Stability and Flow
- Three samples at five binder contents
- · Uncompacted samples
- Maximum theoretical
- specific gravity – Two samples at one
- binder content

6

Superpave

- Compacted samples

 Bulk specific gravity
 - Two samples at four
 - binder contents
- Uncompacted samples
 Maximum theoretical
 - specific gravity
 - Two samples at four binder contents

8

- Marshall Dust to Total binder ratio
- Superpave Dust to Effective binder content

4-9

Module 4

